摘要:SSR檢測(cè)新方法介紹
新技術(shù)方法的產(chǎn)生發(fā)展從來(lái)都是來(lái)勢(shì)洶洶、銳不可當(dāng)?shù)模琒SR的檢測(cè)亦是如此!自從生命科學(xué)邁入到ATCG時(shí)代以來(lái),傳統(tǒng)的僅僅靠“跑電泳,比大小”的定性分析,已經(jīng)越來(lái)越無(wú)法滿足科研工作者對(duì)“準(zhǔn)確、高效、定量”的要求了。二代高通量測(cè)序技術(shù)的發(fā)展,讓這一目標(biāo)成為現(xiàn)實(shí),天昊生物創(chuàng)新技術(shù)—SSRseq,把SSR的“序列信息”及“比例信息”一網(wǎng)打盡!下面就跟隨小編看看SSR檢測(cè)的“前世今生”。
什么是SSR?
SSR (Simple Sequence Repeats,簡(jiǎn)單序列重復(fù)),或稱(chēng)STR(Short Tandem Repeat,短片段串聯(lián)重復(fù))或者M(jìn)icrosatellites(微衛(wèi)星),廣泛的存在于真核生物基因組中。大多數(shù)SSRs是非編碼序列,可以影響基因表達(dá)、剪接、蛋白序列及基因組結(jié)構(gòu)等(1-5)。SSR長(zhǎng)度突變頻率在每一世代每個(gè)位點(diǎn)大概是10-7到10-3之間(6),這遠(yuǎn)遠(yuǎn)高于單個(gè)堿基10-9左右的突變頻率(7-8),從而在基因組中產(chǎn)生了更具多樣性的SSRs。盡管SSR序列自身具有高度的變異性,但是它側(cè)翼區(qū)域的序列卻在物種內(nèi)具有很高保守性,有時(shí)這種保守型甚至在物種間存在(9-12)。SSR相較與其他遺傳變異具有幾方面特點(diǎn),包括共顯性、高度可重復(fù)性和DNA檢測(cè)需要量少等(13-16)。更重要的是,這種SSR序列的多樣性和它側(cè)翼序列保守性的結(jié)合,使它成為一種理想的遺傳分子標(biāo)記。的確,SSRs已經(jīng)在包括DNA指紋圖譜分析、基因作圖、親緣關(guān)系鑒定、分子輔助育種、遺傳多樣性分析、種子純度及品系鑒定中發(fā)揮著重要的作用(16-20)。
SSR多樣性的產(chǎn)生原因及傳統(tǒng)檢測(cè)的不足
SSR多樣性產(chǎn)生的最主要原因是在SSR復(fù)制過(guò)程中DNA聚合酶固有的“滑移”現(xiàn)象(Slippage)造成的(21-27),這種滑移現(xiàn)象同樣可以發(fā)生在體外,導(dǎo)致錯(cuò)誤的SSR等位基因并增加了SSR準(zhǔn)確分型的難度。而且,基于瓊脂糖凝膠電泳、聚丙烯酰胺凝膠電泳、毛細(xì)管電泳這些目前常用的SSR檢測(cè)方法,普遍存在著分辨率不高、不夠準(zhǔn)確、效率及通量不高等問(wèn)題。例如,目前在冬菇、黃麻和木豆中進(jìn)行的DNA指紋圖譜分析僅僅用到25、28和48個(gè)SSR位點(diǎn)(28-30)。這些有限的SSRs不足以構(gòu)建高質(zhì)量SSR指紋圖譜用于區(qū)分親緣性高物種間的關(guān)系。全基因組重測(cè)序雖然一次可以檢測(cè)大量SSR位點(diǎn)(25, 31-32),但是SSR序列僅僅占整個(gè)基因組的很小部分,例如人類(lèi)基因組中的SSR只占3%左右(33),因此全基因組重測(cè)序會(huì)獲得很多我們關(guān)心的SSR以外的冗余序列,這就稀釋了所測(cè)有用數(shù)據(jù)的比例,使得SSR位點(diǎn)的測(cè)序深度很難超過(guò)10-100X(25),這樣在合理的測(cè)序價(jià)格內(nèi),利用全基因組重測(cè)序的方法就難以得到準(zhǔn)確性高的SSR分型。另外,用全基因組重測(cè)序進(jìn)行SSR分型還會(huì)導(dǎo)致某些SSR位點(diǎn)的擴(kuò)增偏好性以及SSR重復(fù)序列較高難度的數(shù)據(jù)分析等問(wèn)題(34-36)。
天昊生物自主研發(fā)的基于二代測(cè)序技術(shù)的SSR分型新方法--SSRseq,這種方法幾乎克服了現(xiàn)存所有檢測(cè)方法的不足,尤其適合對(duì)多SSR位點(diǎn)、超高深度的分型,準(zhǔn)確度高,并且分辨率達(dá)到單堿基的水平。因此適合所有二倍體動(dòng)植物及真核微生物的SSR位點(diǎn)分型。另外,我們還成功對(duì)六倍體植物—油茶進(jìn)行了SSR分型。對(duì)于多倍體物種來(lái)說(shuō),我們的SSRseq可以提供不同等位基因的比例數(shù)據(jù),從而提高了多倍體物種遺傳多樣性分析的準(zhǔn)確度,獲得更加清晰的遺傳結(jié)構(gòu)圖。
參考文獻(xiàn):
1. Li,Y.-C., Korol,A.B., Fahima,T. and Nevo,E. (2004) Microsatelliteswithin genes: structure, function, and evolution. Mol. Biol. Evol., 21,991–1007.
2. Iglesias,A.R., Kindlund,E., Tammi,M. and Wadelius,C. (2004) Somemicrosatellites may act as novel polymorphic cis-regulatory elementsthrough transcription factor binding. Gene, 341, 149–165.
3. Martin,P., Makepeace,K., Hill,S.A., Hood,D.W. and Moxon,E.R.(2005) Microsatellite instability regulates transcription factor bindingand gene expression. Proc. Natl. Acad. Sci. U.S.A., 102, 3800–3804.
4. Krishnan,J. and Mishra,R.K. (2015) Code in the Non-Coding. Proc.Indian Natl. Sci. Acad., 81, 609–628.
5. Gymrek,M., Willems,T., Guilmatre,A., Zeng,H., Markus,B.,Georgiev,S., Daly,M.J., Price,A.L., Pritchard,J.K., Sharp,A.J. et al.(2016) Abundant contribution of short tandem repeats to geneexpression variation in humans. Nat. Genet., 48, 22–29.
6. Buschiazzo,E. and Gemmell,N.J. (2006) The rise, fall and renaissanceof microsatellites in eukaryotic genomes. Bioessays, 28, 1040–1050.
7. Yang,S., Wang,L., Huang,J., Zhang,X., Yuan,Y., Chen,J.-Q.,Hurst,L.D. and Tian,D. (2015) Parent-progeny sequencing indicateshigher mutation rates in heterozygotes. Nature, 523, 463–467.
8. Ossowski,S., Schneeberger,K., Lucas-Lledo,J.I., Warthmann,N.,Clark,R.M., Shaw,R.G., Weigel,D. and Lynch,M. (2010) The rateand molecular spectrum of spontaneous mutations in Arabidopsisthaliana. Science, 327, 92–94.
9. Moore,S., Sargeant,L., King,T., Mattick,J., Georges,M. andHetzel,D. (1991) The conservation of dinucleotide microsatellitesamong mammalian genomes allows the use of heterologous PCRprimer pairs in closely related species. Genomics, 10, 654–660.
10. Moodley,Y., Baumgarten,I. and Harley,E. (2006) Horsemicrosatellites and their amenability to comparative equid genetics.Anim. Genet., 37, 258–261.
11. Dawson,D.A., Horsburgh,G.J., KU¨ PPER,C., Stewart,I.R.,Ball,A.D., Durrant,K.L., Hansson,B., Bacon,I., Bird,S. and Klein,A.(2010) New methods to identify conserved microsatellite loci anddevelop primer sets of high cross-species utility–as demonstrated forbirds. Mol. Ecol. Resour., 10, 475–494.
12. Moodley,Y., Masello,J.F., Cole,T.L., Calderon,L.,Munimanda,G.K.,Thali,M.R., Alderman,R., Cuthbert,R.J., Marin,M., Massaro,M.et al. (2015) Evolutionary factors affecting the cross-species utility ofnewly developed microsatellite markers in seabirds. Mol. Ecol.Resour., 15, 1046–1058.
13. Selkoe,K.A. and Toonen,R.J. (2006) Microsatellites for ecologists: apractical guide to using and evaluating microsatellite markers. Ecol.Lett., 9, 615–629.
14. Guichoux,E., Lagache,L., Wagner,S., Chaumeil,P., Leger,P.,Lepais,O., Lepoittevin,C., Malausa,T., Revardel,E., Salin,F. et al.(2011) Current trends in microsatellite genotyping. Mol. Ecol.Resour., 11, 591–611.
15. Schl¨ otterer,C. (2000) Evolutionary dynamics of microsatellite DNA.Chromosoma, 109, 365–371.
16. Kaur,S., Panesar,P.S., Bera,M.B. and Kaur,V. (2015) Simple sequencerepeat markers in genetic divergence and marker-assisted selection ofrice cultivars: a review. Crit. Rev. Food Sci. Nutr., 55, 41–49.
17. Jarne,P. and Lagoda,P.J. (1996) Microsatellites, from molecules topopulations and back. Trends Ecol. Evol., 11, 424–429.
18. Kim,K.S. and Sappington,T.W. (2013) Microsatellite data analysis forpopulation genetics. Methods Mol. Biol., 1006, 271–295.
19. Chambers,G.K., Curtis,C., Millar,C.D., Huynen,L. andLambert,D.M. (2014) DNA fingerprinting in zoology: past, present,future. Nvestig.Genet., 5, 1–11.
20. Borsting,C. and Morling,N. (2015) Next generation sequencing andits applications in forensic genetics. Forensic Sci. Int.Genet., 18, 78–89.
21. Ellegren,H. (2004) Microsatellites: simple sequences with complexevolution. Nat. Rev., 5, 435–445.
22. Webster,M.T. and Hagberg,J. (2007) Is there evidence for convergentevolution around human microsatellites? Mol. Biol. Evol., 24,1097–1100.
23. Brandstr¨om,M., Bagshaw,A.T., Gemmell,N.J. and Ellegren,H. (2008)The relationship between microsatellite polymorphism andrecombination hot spots in the human genome. Mol. Biol. Evol., 25,2579–2587.
24. Kelkar,Y.D., Tyekucheva,S., Chiaromonte,F. and Makova,K.D.(2008) The genome-wide determinants of human and chimpanzeemicrosatellite evolution. Genome Res., 18, 30–38.
25. Fungtammasan,A., Ananda,G., Hile,S.E., Su,M.S., Sun,C.,Harris,R., Medvedev,P., Eckert,K. and Makova,K.D. (2015)Accurate typing of short tandem repeats from genome-widesequencing data and its applications. Genome Res., 25, 736–749.
26. Abdulovic,A.L., Hile,S.E., Kunkel,T.A. and Eckert,K.A. (2011) Thein vitro fidelity of yeast DNA polymerase and polymerase εholoenzymes during dinucleotide microsatellite DNA synthesis. DNARepair, 10, 497–505.
27. Baptiste,B.A. and Eckert,K.A. (2012) DNA polymerase kappamicrosatellite synthesis: two distinct mechanisms ofslippage-mediated errors. Environ. Mol. Mutagen., 53, 787–796.
28. Zhang,L., Cai,R., Yuan,M., Tao,A., Xu,J., Lin,L., Fang,P. and Qi,J.(2015) Genetic diversity and DNA fingerprinting in jute (Corchorusspp.) based on SSR markers. Crop J., 3, 416–422.
29. Liu,X.B., Feng,B., Li,J., Yan,C. and Yang,Z.L. (2016) Geneticdiversity and breeding history of Winter Mushroom (Flammulinavelutipes) in China uncovered by genomic SSR markers. Gene, 591,227–235.
30. Njung’e,V., Deshpande,S., Siambi,M., Jones,R., Silim,S. and DeVilliers,S. (2016) SSR genetic diversity assessment of popularpigeonpea varieties in Malawi reveals unique fingerprints. Electron. J.Biotechnol., 21, 65–71.
31. Kim,K.-S., Noh,C.H., Moon,S.-J., Han,S.-H. andBang,I.-C. (2016)Development of novel tetra-and trinucleotide microsatellite markersfor giant grouper Epinepheluslanceolatus using 454 pyrosequencing.Mol. Biol. Rep., 43, 541–548.
32. Bozzi,J.A., Liepelt,S., Ohneiser,S., Gallo,L.A., Marchelli,P., Leyer,I.,Ziegenhagen,B. and Mengel,C. (2015) Characterization of 23polymorphic SSR markers in Salix humboldtiana (Salicaceae) usingnext-generation sequencing and cross-amplification from relatedspecies. Appl. Plant Sci., 3, 1400120.
33. Lander,E.S., Linton,L.M., Birren,B., Nusbaum,C., Zody,M.C.,Baldwin,J., Devon,K., Dewar,K., Doyle,M., FitzHugh,W. et al.(2001) Initial sequencing and analysis of the human genome. Nature,409, 860–921.
34. Star,B., Hansen,M.H., Skage,M., Bradbury,I.R., Godiksen,J.A.,Kjesbu,O.S. and Jentoft,S. (2016) Preferential amplification ofrepetitive DNA during whole genome sequencing library creationfrom historic samples. STAR, 2, 36–45.
35. Treangen,T.J. and Salzberg,S.L. (2012) Repetitive DNA andnext-generation sequencing: computational challenges and solutions.Nat. Rev. Genet., 13, 36–46.
36. Gymrek,M., Golan,D., Rosset,S. and Erlich,Y. (2012) lobSTR: ashort tandem repeat profiler for personal genomes. Genome Res., 22,1154–1162.
部分內(nèi)容來(lái)源:doi: 10.1093/nar/gkx093
往期精選文章:
SSR分型四大天王,哪個(gè)才是適合多倍體的那個(gè)它?
選擇天昊,選擇專(zhuān)業(yè)!2017年上半年,天昊生物合作伙伴共發(fā)表SCI文章55篇。截至目前公司合作伙伴發(fā)表SCI文章總篇數(shù)300+,累計(jì)影響因子1000+。我們期待成為您SSR基因分型的優(yōu)質(zhì)服務(wù)提供商!